Dot Pattern across the Center Line of an Oval Rug

Demo by Christine Manges for the Valley Forge Rug Braiding Guild

The dot pattern is one of my favorites across the center line of an oval or rectangular rug. When executed properly, the pattern continues perfectly across the e-laced or shoe-laced center line of the rug. I think the dot pattern gives a beautiful and professional look to a rug - as does a perfectly made slash pattern across the center of a rug, or a diamond pattern.

While the diagrams below show three different colors for the strands so that you can keep track of what's happening with each strand, I STRONGLY RECOMMEND that you make your dot pattern with the same color for the two background strands. If you don't, there is a high risk of choosing a second color that accidentally shifts the contrast "dot" to the wrong color, and then the pattern won't be correct across the center.

Choose ONE background color for strands \#1 and \#2 in the diagrams below, and a sharply contrasting strand for \#3. Although the diagrams show a seam between Strand 1 and Strand 2, there is no need for one if you are using the same color for the crosspiece of the T-Start. Strand 3, the contrast strand, will be the spoke of the T-Start.

Photo left shows a rug with a dot pattern across the center line.

The dot pattern is lost on the curves, but resumes on each side.

Make T-Start

1. Left diagram shows the contrast strand location: the spoke of the T-Start.
2. Right Diagram shows the arrangement of strands at the braided T-Start.

Count Loops

3. Diagram shows how to count loops on the straight braid, which must be a multiple of 3 .

E-lace or Shoe-Lace the Center

4. Diagram shows the asterisked contrast strand location before beginning the 2-DC turn: the last outside (smooth edges side) loop before braiding the first double corner.
5. In the last diagram, note how the arrangement of loops across the center line. Find a lower braid contrast loop next to the center line. The upper braid's contrast loop must be one diagonal set to its right. E-lace or shoe-lace as you prefer.

Lace around T-Start Curve

6. Left Diagram shows how to lace around the T-Start, making 4 increases by skipping 3 loops and going through 2 loops, once.

After the T-Start Curve, lace regularly along the next side, making sure that the dot pattern resumes.

Lace around 2-DC Curve: Two Options

5 increases by skipping 5 times around 2-DC turn

Diagram above shows how to lace around 2-DC curve with 5 skipped loops. The first skip occurs in the new braid just before lacing the first DC loop (1), and the next 4 skips occur just after lacing each of the 4 double corner loops (1,2, 1,2).

5 increases by skipping 4 times and making one "Go Thru 2 Loops" around 2-DC turn

Diagram above shows how to lace around the 2-DC curve with 4 skipped loops + one "Go
Thru 2 Loops." After lacing the $2^{\text {nd }}$ loop of the first DC, skip a new braid loop, then lace through the next 2 new braid loops, then lace through the $1^{\text {st }}$ loop of the $2^{\text {nd }} D C$.

I like the 2 nd method because it centers the skips more evenly along both sides of the 2-DC curve... but either method works fine.

After these first two curves, the dot pattern is maintained if you simply insist on making increases in loop count that are a multiple of 3: 6 and 6 in one row, and 3 and 3 in the next row. See the table below.

Note: the First Curve within each row is the 2 -DC Curve. The $2^{\text {nd }}$ Curve within each row is the curve around the T-Start.

Row	First Side	First Curve (2-DC)	Second Side	Second Curve
$\mathbf{1}$	Braid T-Start + multiple of 3 loops	2 Double Corners	 e-lace or shoe-lace	4 increases around T
$\mathbf{2}$	Lace	$\mathbf{5}$ increases	Lace	$\mathbf{6}$ increases
$\mathbf{3}$		3 increases		3 increases
$\mathbf{4}$		6 increases		6 increases
$\mathbf{5}$		3 increases		3 increases
$\mathbf{6}$		6 increases		6 increases

Note: the increases that don't follow the standard pattern of " $3 / 386 / 6$ " are shown in bold text.

